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i. In recent years, among other problems of laser thermonuclear synthesis (LTS) there 
has been great interest in so-called "conical" targets [1-7], in which the thermonuclear 
fuel is compressed and heated in a conical cavity in heavy material (lead, etc.) with the 
aid of a shell section accelerated by a laser pulse (Fig. i). It can be expected that the 
basic features of the flow pattern will be similar to the case of compression and heating 
of shell microtargets. The main advantages of using such targets are the following: The 
action of the laser radiation is applied not to an entire sphere, but only a relatively 
small solid angle, which simplifies creation of a more homogeneous laser spot; the laser 
energy attainable is concentrated on a significantly smaller surface, permitting increased 
energy flux and simulation of the situation which will exist when more powerful lasers are 
developed; the implosion duration is increased, because the same mass as in the case of a 
spherical shell can be located at much greater distances from the center (~i000 um), so 
that the work is performed over a much longer path, which markedly reduces the peak power 
requirements of the laser pulse, There is no doubt that such targets also have drawbacks. 
When the aperture angle of the conical cavity is too small, target heating and compression 
can be affected significantly by the products of evaporation of the cavity walls, even to 
the point of their coating the channel and cutting off the shell segment from the laser 
beam. Questions arise as to the effect of conditions in the wall region on stability of 
target material compression, on the behavior of the heavy material in the final stage of the 
process, in particular, on formation and size of the cavern at the peak of the conical target, 
etc. 

The present study, will present some results of two-dimensional calculations (using Euler 
variables) of such targets, performed on the basis of the conservative variant of the grid- 
characteristic method of [9] proposed in [8]. As in [8], the mathematical model of the 
physical processes occurring in the high temperature plasma includes absorption of ex- 
ternal laser radiation (in the one-dimensional formulation along radial directions), the 
hydrodynamic motion, electron thermal conductivity, and electron-ion collision relaxation. 
The basic system of two-dimensional non-steady-state equations of the two-temperature plasma 
was presented in [8], and was supplemented by an equation for the mass concentration g of 
one of the components of the two-component mixture of ideal gases 
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This equation was solved for the hydrodynamic motion stage using the method of splitting the 
calculation among physical processes described in [8]. Here A = HIH2H3; $13 = HzH3, $23= 
H2H a are geometric parameters characterizing the elementary volume and its surface: HI, H2, 
Ha, Lam~ coefficients; p, density; u, v, azimuthal and radial components of the velocity 
vector; @, r, spherical coordinates. The thermophysical properties of the plasma (specific 
heats at constant volume, Ce, ci, absorption coefficient K, thermal conductivity coefficient 
~e, etc.) are determined by the usual method for a multicomponent mixture, i.e., as functions 
of the density p, electron and ion temperature Te, Ti, and mass concentration g. As has 
already been noted, the external laser energy flux is taken homogeneous over azimuthal 
angle @ and acts only within the limits of the conical cavity. The integral region (in the 
Euler variables @, r) includes some portion of the conical cavity together with the shell (of 
thickness s) R 0 - 6 z ~ r < R0 + 62 and a portion of the volume occupied by the heavy material 
(lead with a density of 15.5 g/cm 3 for the calculations), 0 < 8 < 8.~ + 63 and was varied 
(by choice of 6z(t), 62(t) , 63(t)) as the process developed ~o that"it encompassed practi- 
cally the entire mass of material set into motion (both shell and lead, see Fig. i). As in 
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[8], the exterior boundary of the integration region R0 + 62(t) was chosen to reduce a to a 
minimum the effect of low density mass which leaves the integration region. 

2. Before analyzing the results obtained for conical targets, we will briefly compare 
data obtained for one-dimensional problems obtained using the conservative variant of the 
grid-characteristic method [8] using both Euler variables and Lagrangian mass coordinates 
with the calculations of Samarskii et al., performed in Lagrange variables using a completely 
conservative implicit method [i0, ii]. 

For LTS problems in which motion of a finite mass of material is considered, methods 
using Lagrange variables are most widespread, in particular for one-dimensional problems, 
where the advantages of that approach related to automatic grouping of the difference grid 
nodes in regions with high density are obvious. Euler variables are preferable for signifi- 
cant shear deformations of the material, possible in multidimensional problems, since in a 
number of cases they permit a more detailed description of absorption of the external laser 
radiation in the low density "crown" of the disintegrating portion of the target material, 
where in the traditional Lagrangian approach it is quite difficult to insure the necessary 
spatial step in the difference grid (as well as near the center of the target). In addition, 
in a number of cases with Euler variables it is difficult to insure the necessary detail 
in the difference grid in the region with high material density, especially in problems 
involving very thin shells. 

In the one-dimensional case, when the Lagrangian mass coordinate m is chosen such that 
dm = prydr the system of equations used for the calculations takes on the form 
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where in analogy to [ 8 ]  the laser radiation flux density q(t, m ) = q r ( t )  exp(--j~ (K/pff) dm;Qei=Q o 

p2(Te--TO/T~/~ is the exchange term; E = ~e + gi + v2/2 is the total energy; p = Pe + Pi 

is the pressure (Pe,i = (~ - l)p); ee,i is the internal energy of electron and ion components 

(ge,i = Ce,iTe,i); ~ is the adiabatic index; v = O, i, 2, for planar, cylindrical, and spheri- 

cal geometries. The left (hyperbolic) portion of system (2.1)-(2.5) can be approximated by an 
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explicit difference scheme of first order accuracy [8], a scheme with positive approximation 
which gives a monotonic solution for calculations of flows with discontinuities within the 
integration region and is stable given fulfillment of the Courant-Friedrichs-Levy condition 

~ h/max JXiJ, where ~.i are eigenvalues of the matrix A of the original system (2.1)-(2.5) 

aw!at + A(t, m, w)Ow/O~ =/( t ,  m, w). 

The right side of system (2.1)-(2.5), which makes the original system parabolic and includes 
terms with electron thermal conductivity and exchange term Qei, is approximated by an implicit 
scheme in order to avoid the limit on integration step T ~ h 2 characteristic of finite schemes 

for parabolic equations. 

When Euler variables (t, r) are used the form of the original system (2.1)-(2.5) and 
the choice of unknown parameters w = {p, p~, pE, psi} change somewhat, which changes the 
difference relationships in the scheme of [8], together with the integration region and 
corresponding boundary conditions. 

Calculationsfor a number of one-dimensional problems involving compression of planar 
and spherical solid microtargets and spherical shells were performed using the formulation 
described above. Some of the results of these caclculations are presented in Fig. 2-6. 

For a planar DT target (initial density P0 = 0.2 g/cm 3) Fig. 2 compares calculations 
performed in Lagrangian mass coordinates with the conservative variant of the grid-charac- 
teristic method (CGC) (solid curves, integration step h = Am/m 0 = 0.004; dashes Am/m 0 = 
0.008) to Kosarev's second order accuracy explicit completely conservative method [8], 
similar to the well known method of Samarskii [i0, ii] (crosses in Fig. 2, &m/m 0 = 0.01). 
At time t = t i = 1 nsec (where t i is the duration of the triangular laser pulse) profiles 
of density P/P0, and electron T e (keV) and ion T i (keV) temperatures are shown together with 
dimensionless velocities v/v X (v X = rx/t i = 109 cm/sec). The laser pulse energy density 
~= 6.6.107 J/cm 2 and other defining parameters correspond to the calculations performed 

in [12]. 

The data on Figs. 3 and 4 were obtained for compression and heating of a 10% spherical 
shell of CD 2 (P0 = l g/cm 3) by a trapezoidal laser pulse (Fig. 4) t i = 0.i nsec long with 
total energy E = 300 J. The initial shell radius R 0 = i00 ~m. Parameter profiles are 
shown for the time t = 0.036 nsec (Fig. 3) together with time dependences of maximum 
values of density Pmax, density of the inner shell boundary Pc and density at the center of 
the target Pc (Fig. 4). Shown are calculations with Lagrangian mass variables (total 
number of difference grid nodes M = 50) by the CGC method (solid lines) and by the implicit 
fully conservative method [i0, ii], as performed at the Applied Mechanics Institute, 
Academy of Sciences of the USSR (dashes). As in the preceding variant, the agreement of 
the results is completely satisfactory. 

Two-dimensional problems were modeled numerically using the method of [8] with Euler 
variables, so it is of interest to compare this method with data of other methods using the 
same type of variables. Some results of such a comparison with calculations performed atthe 
Applied Mechanics Institute, Academy of Sciences of the USSR, by the method of [i0, Ii] are 
shown in Figs. 5 and 6 for a solid spherical target of CD 2 (Fig. 5, triangular pulse t i = i 
nsec duration and total energy E = 300 J, initial sphere radius R 0 = 55 ~m) and a 10% 
shell of CD 2 (same variant as Figs. 3 and 4). The solid curves of Figs. 5 and 6 are 
calculations by the CGC method in Euler variables, while the dashes are Applied Mechanics 
Institute data (Lagrange variables) with parameter profiles at time t = 0.5 nsec and t = 
t i = 0.i nsec, respectively. On the whole, the agreement of the data is completely satis- 
factory, although the method of [8] with Euler variables does not reproduce certain 
details in the density profile, in particular, the additional compression of the target 
material between the shock wave front and the thermal front, seen in the calculations with 
Lagrange variables (the density maximum second from the left in Fig. 5). The maximum den- 
sity value in the target material is reproduced much more poorly for shell problems than 
in calculations with Lagrange variahles (although the mean values in the compressed portion 
of the shell practically coincide, Fig. 6). In addition, the calculations in Euler 
variables produce a better expressed front in the shock wave traveling toward the center, 
which in the physical coordinates (t, r) is quite smeared in Lagrangian mass variables, be- 
cause in regions with low density and also near the center of the target in spherical geo- 
metry the difference grid is less fine than in a continuous medium and away from the target 
center. 
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The comparisons presented above show that the method of [8] produces results fully usable 
for the given class of problems, including those in Euler variables, and can serve as a base 
for study of various multidimensionl effects which develop upon compression and heating of 
microtargets by laser radiation. 

3. One-dimensional calculations of compression and heating of microtargets (including 
"conical" ones) allow quite detailed reproduction of the major features of the phenomena being 
considered, evaluation of the effect of certain physical processes, optimization of targets, 
etc., however, questions related to the real multidimensional character of problems remain 
open. Ss of these effects related to the multidimensional nature of the problem for conical 
targets are illustrated by Figs. 7-13. 

Figures 7 and 8 show data corresponding to the initial stage of interaction of a laser 
pulse with a conical target with the following parameter values: semiaperture of conical 
cavity in lead %~ = 7.5 ~ , thickness of CD 2 shell (P0 = i g/cm 3) 6 = 3 pm, external shell 
radius R0 = i000 ~m, duration of triangular pulse t i = 25 nsec, total pulse energy E = 600 
J. At time t = 0.25 nsec, when the shock wave formed by the laser pulse action exists to the 
outer boundary of the shell r = R 0 - 6, we present the velocity field (Fig. 7), isobars P/PX = 
const (PX = p0R~/t~ ) and pressure distribution along the radial directions 8 = 0, 8 = 8, = 7.5 ~ 
and azimuthal direction r = 999 pm (Fig. 8, dash-dot line, initial position of conical cavity 
boundary). It is evident that near the boundary with the lead the compression wave (formed 
ahead of the thermal front) exists onto the internal boundary of the shell earlier. Outside 
the wall region the parameter distribution in the azimuthal direction is practically homo- 
geneous and the interaction pattern is the usual one for shell problems: radial motion of 
the compressed portion of the spherical segment toward the center with expulsion of a hot low 
density plasma into a "c~own." As is evident from the velocity field presented in Fig. 7, in 
the region near the wall there is a pattern in the azimuthal direction similar to that in the 
radial directions: propagation of the compression wave in the lead, evaporation and flow into 
the conical cavity of lead vapor. The interaction in the wall region of perpendicular 
"radial" and "azimuthal" jets of the evaporation products of the spherical segment and the 
lead form an elevated pressure zone in this region (Fig. 8), which leads to an earlier exit 
of the "radial" compression wave onto the internal boundary of the shell segment near 8 = e,. 
In this stage of laser pulse action when plasma expulsion occurs into a practically un- 
deformed "cylindrical" channel, the pressure in the "crown" along the radial directions 
8 = const changes slightly. 

A similar pattern in the initial stage of laser pulse action on a spherical segment 
located in a conical lead cavity can be observed for other values of the problem parametes. 
The data presented in Figs. 9-13 correspond to the case 8, = 25 ~ , 5 = 2 pm, R0 = 1726 pm, 
rectangular pulse duration t i = 20 nsec at a radiant flux density qg(t) ~ q0 = 6"i01s W/cm2- 
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The spherical film and residual gas filling the conical cavity are CD 2, For this variant 
Semenov's method with an implicit fully conservative scheme [I0, Ii] in Lagrangian variables 
was used to perform calculations in a one-dimensional formulation to evaluate the effect 
of multidimensionality and use of Euler variables in the two-dimensional calculations using 
the conservative variant of the grid-characteristic method [8]. 

At the stage when the spherical segment reaches the peak of the conical cavity the 
initial flow pattern described above is maintained. As is evident from comparison of the 
density and velocity profiles, as well as the electron T e (keV) and ion T i (keV) tempera- 
tures (Fig. 9) along the axis of asymmetry e = 0 at time t = 10.3 nsec (briefly before 
arrival of the shock wave at the peak of the conical cavity), on the whole the two- 
dimensional flow near the axis of symmetry (solid curves) agrees with the results of one- 
dimensional calculations (dashes), in particular, with regard to position of the shock and 
thermal wave fronts and the intervening shell position, etc. The greatest difference is in 
the peak value of shell density (when the values of mass moving toward the center are 
sufficiently close to each other), which is caused by the use of Euler variables in the two- 
dimensional numerical calculation, and has already been noted in the comparison of one- 
dimensional calculations for spherical shells discussed in Sec. 2. 

For time t = 10.5 nsec Figs. I0 and ii show isochors of p(g/cm 3) = const and isotherms 
T e = const, with the dashed lines being concentration isolines g = 0.i (upper curves) and 
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= 0.9 (lower), which convey the current position and form of the boundary with the lead, 
while the dash-dot lines are the initial boundary of the conical cavity. 

In this stage of motion of the spherical segment toward the center the following basic 
features can be distinguished. Remaining relatively cold, the shell moves toward the center 
ahead of the thermal wave front, increasing markedly in thickness ("spreading"). A shock 
wave propagates ahead of the shell in the low intensity gas, always gaining over the shell. 
In a large portion of the conical cavity adjacent to the axis of symmetry the flow is radial 
and close to one-dimensional (the azimuthal components of the velocity.field are much smaller 
than the radial). The two-dimensional natureof the flow appears basically near the boundary 
with the lead, where, as in the initial stage, the shock wave motion toward the center 
gains over the shell near this boundary (the velocity of the shock wave front near the 
boundary with the lead is markedly higher than near the flow's axis of symmetry). The 
difference in velocity of various sections of the shell itself is much less: near the axis 
it moves on the average even somewhat faster, as is indicated, for example, by the isoline 
p = 0.05 in Fig. i0. There are two relatively hot regions: the "crown," where the electron 
and ion temperatures are approximately the same and of the order of 0.5 keV, and the region 
directly behind the shock wave front, where because of the low density the ion and electron 
temperatures differ, especially so near the boundary with the lead. The portion of the shock 
wave moving in the radial direction near the boundary with the lead initially reaches the peak 
of the conical cavity, elevating the temperature and pressure there, so that as in the case 
of compression and heating of microtargets with harmonic perturbations of their form considered 
in [8], there is a tendency toward formation of turbulent motion in the central portion of 
the conical cavity between its peak and the shell moving toward the center. In the "crown" 
region the lead evaporation products partially fill the peripheral portion of the cavity (as 
can be seen by the displacement relative to the axis e = 0 of the isolines $ = const), al- 
though on the whole this portion of the conical cavity is filled by products of evaporation 
of the shell segment, i.e., closing of the channel does not occur. A compression wave 
propagates within the lead. 

In this stage of shell segment motion in the conical cavity the most interesting feature 
is the development of instability in the boundary with the lead in the region between the 
shock wave front and the thermal front, as indicated by the behavior of the line g = 0.i here 
(Figs. i0 and ii). This phenomenon recalls Kelvin-Helmholtz instability and is practically 
absent in the "crown"region (behind the thermal front), where parameters are fully leveled 
by electron thermal conductivity. On the whole, the deformation of the conical cavity in 
this stage is relatively small, and in a first approximation such problems can be modeled 
by corresponding one-dimensional calculations up to the arrival of the shock wave at the 
cavity peak. 
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The final stage of compression and heating of the spherical segment in a conical cavity 
is shown in Figs. 12 and 13, where for the time t = 14.9 nsec we present isochors p (g/cm 3) = 

const and isotherms T e = const and T i = const, the dashed lines are concentration isolines 
$ = 0.i and 0.9, and dash-dot lines are the initial position of the boundary with the lead. 
As is evident from the isolines p = const in this stage at the peak of the conical cavity a 
depression is formed in the lead - a cavern which at time t = 14.9 nsec has a size of ~ 50 pm 

(Fig. 12), closed on the cavity side by fragments of the shell at a distance r ~ 100-150 ~m, 
beyond which there is a thermal wave front with low density "crown" at a temperature of ~ 1 
keV. The temperature of the plasma in the cavern is ~ 0.3 keV, the density is of the order of 
tens of g/cm3,, i.e., the compression is relatively low, due to formation of a shock wave 
which outdistances the main mass of the shell segment and heats the gas in the conical cavity 
before arrival of the shell at the central part of the target. The peripheral portion of the 
conical cavity is deformed quite weakly, while the load evaporation products do not flow 
further into the cavity than the line 8 = 18 ~ , which is evident from the behavior of the iso- 
lines g = const, which have a form close to lines 8 = const in this portion of the conical 

cavity. 

Thus, in laser pulse compression and heating of thin segments located within a conical 
cavity in heavy material, the characteristic features observed by numerical modeling of the 
problem in a two-dimensional formulation are: formation of a region of increased pressure 
in the wall layer in the initial moments of laser pulse action and earlier exit of the com- 
pression wave formed ahead of the thermal wave front and propagating within the target onto 
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the internal boundary of the shell segment in the area near the wall; unstable behavior of 
the boundary with the lead (Kelvin-Helmholtz type instability) on the segment between the 
shock wave front advancing relative to the main segment mass and the thermal wave front at the 
stage where the shell segment is driven to the peak of the conical cavity; formation and 
development of a depression (cavern) in the heavy material near the peak of the conical cavity 
with slight overall deformation of the peripheral part of the conical cavity; flow into the 
peripheral part of the conical cavity of products of wall evaporation, but without complete' 
filling of the channel. 

LITERATURE CITED 

i. G. S. Fraley and R. J. Mason, "Preheat effects on microballoon laser-fusion implosions," 
Phys. Rev. Lett., 35, No. 8 (1975). 

2. R. J. Mason, D. V. Brockway, and E. L. Lindman, "2-d implosion of structured pellets 
for laser fusion," Los Alamos Report LA-VR-76-2319 (1976). 

3. V. I. Vovchenko, A. S. Goncharov, et al., "Generation of thermonuclear neutrons by 
laser action on conical targets," Pis'ma Zh. Eksp. Teor. Fiz., 26, No. 9 (1977). 

4. H. Derentowicz, S. Kaliski, et al., "Generation of thermonuclear fusion neutrons by 
means of a pure explosion. II. Experimental results," Bull. Acad. Pol. Sci. Ser. Sci. 
Tech., 2-5, No. i0 (1977). 

5. S. I. Anisimov, V. I. Vovchenko, et al., "Study Of the process of thermonuclear neutron 
generation by laser action on a conical target," Pis'ma Zh. Tekh. Fiz., i, No. 7 (1978). 

6. V. V. Demchenko and A. S. Kholodov, Gas and Conical Targets. Analytical Solutions 
[in Russian], NTO MFTI, Moscow (1979). 

7. M. D. Taran, V. F. Tishkin, et al., "Modeling of collapse of quasispherical targets in 
solid state cones," Preprint, IPM Akad. Nauk SSSR, No. 127 [in Russian] (1980). 

8. O. M. Belotserkovskii, V. V. Demchenko, et al., "Numerical modeling of some problems 
in laser compression of shells," Zh. Vychist. Mat. Mat. Fiz., 18, No. 2 (1978). 

9. K. M. Magomedov and A. S. Kholodov, "Construction of difference systems for hyperbolic 
type equations on the basis of characteristic relationships," Zh. Vychisl. Mat. Mat. 
Fiz., 9, No. 2 (1969). 
A. A. Samarskii, P. P. Vo!osevich, et al., "Finite difference method for solution of 
one-dimensional nonsteady state problems in magnetic hydrodynamics," Zh. Vychisl. 
Mat. Mat. Fiz., 8, No. 5 (1968). 
A. A. Samarskii and Yu. P. Popov, Difference Methods in Gas Dynamics [in Russian], 
Nauka, Moscow (1975). 
Yu. V. Afanas'ev, N. G. Basov, et al., "Heating of a deuterium-tritium plasma to 
thermonuclear temperatures with use of a laser," Preprint FIAN Akad. Nauk SSSR, 
No. 66 [in Russian] 41972). 

i0. 

ii. 

12. 

884 


